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Abstract

Blockchains distribute data and execution across a public
peer-to-peer network. This distribution renders them
highly resilient against failures but also fundamentally
limits their performance as they require every node to
execute every transaction. As a result, systems such as
Bitcoin or Ethereum support only about ten transactions
per second on chain.

This paper presents BitWeave, a blockchain protocol that
enables parallel transaction validation and serialization
while maintaining the same safety and liveness guarantees
provided by PoWprotocols, such as Bitcoin, on the underly-
ing blockchain. BitWeave partitions the system’s workload
acrossmultiple distinct shards, each ofwhich then executes
transactions mostly independently, while allowing for
serializable cross-shard transactions. The protocol relies
on audit mechanisms to detect and punish misbehaving
shards instead of complex committee selection schemes.

Evaluation shows that this scheme scales linearly
with the number of shards As a result, BitWeave upholds
Bitcoin’s security and decentralization while scaling to
thousands of transactions per second. We further demon-
strate that performance does not degrade significantly
during shard failures.

1 Introduction

Blockchains are a promising technology to enable decentralized
applications. In particular, blockchains perform state machine
replication across a public peer-to-peer network. This means
they can support high-value applications, such as international
payment processing [30], online auctions [38], and supply chain
management [23], without the reliance on a trusted party.

However, in practice today, systems like Bitcoin or Ethereum
are limited to tens of operations per second. The limited perfor-
mance of these systems stems from the fact that they require all
participants of the network to validate every transaction which
significantly limits the overall throughput of the system. This
makes it impossible to support the workload of any real-world
application at scale.

We introduce BitWeave, a scalable transaction sharding pro-
tocol that is directly applicable to Bitcoin, Ethereum, and other
public and private blockchain systems. At a high level, sharding
allows breaking the collective workload of a system into
smaller workloads that can be processed mostly independently.
BitWeave implements sharding by building on the insight from
Bitcoin-NG[12] that “mining”of ablock in traditionalNakamoto

consensus performs two tasks: leader election and transaction
serialization, which are separable tasks. BitWeave leverages
this to differentiate between protocol leaders, that perform
consensus, and shard commanders, that serialize transactions.

The BitWeave protocol enables shards to executemostly inde-
pendently and relies on auditmechanisms to ensure correctness.
The protocol distinguishes between the main chain, that mostly
processes meta-information, such as who is responsible for
which shard, and shard chains, that contain actual transaction
information. Shards are not delegated to a trusted third party or
a committee of nodes but are instead serialized by an untrusted
node: the shard commander. Shard participants can rectify
failure or misbehavior of shard commanders using the main
chain. In the common case, this allows for high throughput,
while safety is guaranteed during Byzantine failures.

To our knowledge, BitWeave is the first sound blockchain
sharding protocol. BitWeave maintains security by avoiding
dilution of mining power across shards, provides a sound
incentive structure, and upholds decentralization by not giving
large mining pools additional advantages. Instead of assigning
a certain fraction of the mining power (or stake) to each shard,
all mining power remains at the main chain. The number of
information processed by themain chain is keptminimal, which
allows nodes to participate in the consensus protocol virtually
independently of their computing power. This, in turn, avoids
centralization around a few powerful entities.

2 Background

We now give a high level overview of the problems BitWeave is
addressing and how it compares to other approaches. Note, this
section does not give a comprehensive overview over related
work. We refer to Section 6 for that.

2.1 What are permissionless blockchains?

Permissionless blockchain systems are decentralized, replicated
state machines with open membership. In general, these
systems are comprised of a set of nodes, connected by a
peer-to-peer network overlay, and operate in an environment
without public key infrastructure. The goal of a blockchain
is to facilitate the replication and ordering of state-transition
operations in order to provide a globally consistent state.
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Many permissionless blockchain systems implement some
protocol of the following nature. First, there is a process
LEADER that selects a designated node from the network of
participating nodes. Thedesignated node is awarded the right to
propose state updates for some time called an epoch, whose du-
ration is determined by a function EPOCH. The node performs
these proposed state updates via a process ORDER in which
the node sequences some set of state-transition operations and
propagates the proposals to the rest of the network. In most sys-
tems, the leader is generally incentivized with some reward for
performing ORDER. Depending on how the LEADER process is
defined, situations may arise in which multiple protocol leaders
areassigned foragivenepoch, resulting in forks, orparallelhisto-
ries of operation sequences. If the protocol produces forks, there
must be a mechanism for deciding between conflicting forks, so
that eventually the protocol converges back to a single history.

To make the preceding generalization concrete, we examine
Bitcoin, which implements Nakamoto Consensus. In Nakamoto
Consensus, LEADER and ORDER are facilitated through
Proof-of-Work (PoW): Miners, or nodes competing for protocol
leadership, pick a group of transactions from the network
and create a block. To propose this block as an update to the
blockchain, they compete to solve a cryptographic puzzle,
whose solution designates the solver as a protocol leader. The
solved block is broadcast to all other nodes in the network, and
eachnodewill accept it after successfully validating it. Theblock
solver is entitled a monetary reward if it is globally accepted,
and all miners repeat this process for the next process. EPOCH
is implicitly maintained through a global difficulty parameter
which is set so that the entire network ofminers is likely to solve
the puzzle, i.e., mine a block, only once in a specified interval.
As a LEADER process, PoW introduces the possibility of forks
when two miners propose competing blocks at the same time.
To resolve forks, miners in Nakamoto consensus fork to build
on and the fork that gets extended first “wins”.

2.2 Why do current protocols not scale?

We now discuss the major bottlenecks of blockchains: verifica-
tion, execution, and communication. Essentially, the LEADER
and ORDER processes as described require massive replication
of both data and computation. Thus, what the network can
process as a whole is limited by the fact that every participant
needs to process, forward, and execute all transactions.

First, transactions in blockchain systems differ significantly
from those in conventional database systems. In blockchain pro-
tocols, each node maintains the local state in an authenticated
data structure to be able to verify and process future blocks. In
particular, blockchain nodes usually calculate and store some
form of Merkle-tree of the state, and every block contains the
root hash of the current state. These hash trees can be used both
to verify blocks and to provide succinct proofs of some substate
of the system. Executing transactions in such an authenticated
manner requires more computation and storage. This is one of
the reasons why systems such as Ethereum employ a limit on
howmuch computational steps a block can contain (“gas limit”).
Previous work has demonstrated that an improved storage

engine can mitigate this bottleneck to some amount [33].
Second, blockchains rely on digital signatures to ensure

the correctness and authenticity of messages. Intuitively,
checking every transaction request and block generates a
high computational workload as digital signatures are rather
complex to verify. Increasing the number of transactions for
some time interval thus significantly increases the burden for
every node in the network to participate in the protocol.

Third, in order for every node to be able to process every block
and transaction, all transactions and blocks must be propagated
to the entire network. Intuitively, this creates a high network
communication overhead. Blockchains usually execute across
a geo-distributed peer-to-peer network. Here, larger state that
needs to be synchronized will further increase the considerably
high propagation latencies.

Even worse, scalability mechanisms may harm decentral-
ization, a key promise of blockchains. Bigger block sizes raise
the CPU and storage requirements for nodes participating in
the network. This problem is especially salient for new nodes
joining the network the need to verify all blocks in the chain be-
fore processing new transactions. As a result, only participants
with strong hardware that are well-connected may participate
in the protocol, causing a more centralized network layout.
Further, merely increasing the block size in Nakamoto-based
system do not necessarily improve throughput [13, 10]. While
larger blocks can hold more transactions, they take longer to
propagate through the network. Thus, the network is more
likely to fork and, in turn, discard blocks. Similarly, increasing
the frequency of newlymined blocks leads to a higher likelihood
of forks as well.

2.3 Why is sharding blockchains hard?

Sharding aims to address all three scalability bottlenecks by
breaking up the blockchain’s workload and assigning it to a
set of shards, each of which can operate mostly independently.
Sharding then allows every participant of the protocol to
process only a subset of all transactions depending on which
shards they subscribe to. Ideally, this allows to linearly scale
the throughput of the system without increasing the burden on
any particular participant.

However, realizing a sound and effective sharding protocol
faces significant challenges. Previous work usually implements
sharding in the following way [39]. Some mechanism keeps
track of a set of identities, e.g. by examining the last kminers of
a PoW chain [20]. The protocol then assigns shard some subset
of these nodes. Each shard then locally runs a consensus mech-
anism, such as PBFT [5], and a distributed transaction protocol,
such as two-phase commit, handles cross-shard transactions.
Finally, some scheme is in place to periodically “merge” the
state of all shards. Drawbacks in existing sharding solutions can
essentially be broken down into three categories: reduced safety,
loss of network decentralization, and lack of economic incentives.
If implemented incorrectly sharding may harm immutability,
a core safety property of blockchains. Blockchains provide
immutability by making it economically or computationally
expensive for an adversary to undo transactions or tamper with
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the state. For example, Bitcoin would require controlling more
than 25% of the mining power to modify the state [14]. A naive
sharding solution would simply split all miners into k shards,
whichwould reduce the safety of a shard by a factor 1

k
compared

to the system as a whole. Solutions such as Monoxide [40]
address dilution of mining power by relying on large-scale
mining facilities to concurrent process all shards. Mining a
blockchain or a shard chain requires verifying and executing
every single transaction of that chain. This concurrent mining
scheme is thus not possible for most node in the network but
only large scale actors, which, in turn, harms decentralization.

Finally, OmniLedger [21] is a safe solution for sharding but
has some practical limitations. OmniLedger relies on provably-
random assignment of nodes to shards to prevent colluding
parties to be assigned to the same shard. The protocol randomly
assigns each shard a quorum of nodes at the beginning of every
epoch, which has two major drawbacks. First, whenever nodes
are reassigned to a different shard, they need to update their
local state which is computationally costly. Second, as the
protocol requires the existence of numerous shards, each with
their own replica set, transaction fees are potentially split be-
tween many participants, which makes it hard to build a sound
incentive structure. Further, as node are assigned to a random
shard, they might have no stake in that particular shard, which
further disincentivizes them from participating in the protocol.

Part of the Ethereum 2.0 protocol is sharding mechanism
similar to OmniLedger. Here each shard is assigned a large set
of “notaries” which have a similar function as the per-shard quo-
rum in OmniLedger. To the best of our knowledge, no formal
specification of this sharding protocol exists yet, butwe expect it
to face similar challenges asOmniLedger. Further, it is unclear if
Ethereum 2.0 will support serializable cross-shard transactions.

2.4 What is Bitcoin-NG?

While, in most protocols the LEADER and ORDER tasks
are bundled together in one process, Bitcoin-NG [12], on
which BitWeave builds, breaks down the process of mining in
traditional Nakamoto consensus into its constituent processes
to increase throughput. The Bitcoin-NG LEADER process
proceeds as follows: Miners solve a PoW puzzle and broadcast
a special block called a keyblock with the solution to the rest of
the network, signaling their status as the protocol leader.
Once a miner has been elected leader, it continuously

performs the ORDER process by grouping transactions into a
sequence ofmicroblocks until a new leader is elected. Miner here
do notmine on the key block, but on themost recentmicroblock
they have seen to maintain a serial order of blocks. In Bitcoin-
NG, solely the network speed and how quickly the leading
miner can sequence transactions limits the overall throughput.
While Bitcoin-NG improves throughput over the conven-

tional Bitcoin protocol, it is still limited to the bandwidth
of a single entity executing the ORDER-process. BitWeave
addresses this limitation by accommodating multiple distinct
microblock chains that each can be ordered by a distinct entity,
which we discuss in the next section.

3 The BitWeave Protocol

BitWeave introduces a novel sharding protocol design allows for
concurrent serialization of transactions without sacrificing se-
curity guarantees afforded by traditional Nakamoto consensus.
It does so by allowing the network to self-organize into pools
of nodes that concurrently process transactions. Since most
blockchains today use account-based transactionmodels, we de-
scribe how BitWeave parallelizes transaction processing under
this model. However, BitWeave can be easily applied to other
transaction models as well, such as UTXO-based transactions.

BitWeave enables sharding by supporting multiple, con-
current microblock chains. Each shard is responsible for
maintaining a subset of all accounts. A transaction may operate
on account data that exists in multiple shards, and each shard in
which it operates will process the transaction. To enable scala-
bility, BitWeave is designed to minimize the number of shards
included in a transaction and the amount of communication
neededbetweenshards. Figure1showshowBitWeavecompares
to existing protocols, Bitcoin and Bitcoin-NG, at a high level.
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Figure 1: A high-level comparison of three protocols: Bitcoin,
Bitcoin-NG, and BitWeave. Each color denotes a different par-
ticipant in the system. The circular blocks with keys represent
key blocks, and the “Tx” labeled blocks are transaction carrying
blocks.

3.1 Assumptions and AttackModel

Like previous work [21, 12], BitWeave is designed to be resilient
against a strong adversary that controls up to 25% of the
network mining power (or stake). Honest nodes in this setup
are entities that execute the protocol as prescribed. Malicious
nodes may want to change the network’s behavior to their
advantage or break the network entirely. To achieve this,
attackers may engage in arbitrary Byzantine behavior, such
as issuing invalid transaction requests, delays or hiding of
messages, and issuing conflicting microblocks. Fraud in this
setting consists of a specific type of Byzantine behavior in
which a shard commander intentionally issues an invalid block.

To guarantee liveness, BitWeave assumes an upper bound on
network latencies and assumes the absence of long-lived net-
work partitions. Bitcoin implicitly makes the same assumptions
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and does not guarantee safety in the presence of long-lived
partitions. Additionally, like other decentralized systems, we
assume that participants have a general interest to advance
the protocol as long as they are financially incentivized to
do so. So, similarly how it is unlikely to encounter an empty
block in Bitcoin, even though miners are allowed to issue them,
we expect shard commanders to publish a steady stream of
microblocks to increase their revenue.

The BitWeave protocol expects that network participants
have some incentive to validate the correctness of shards. This
is a realistic assumption as shards followers usually have a stake
in their currently running transactions, aswell as the network it-
self. Existing blockchain systemshave similar assumptions such
as the existence of so-called “full nodes”. An undetected failure
might significantly lower the value of a cryptocurrency backed
by the blockchain and thus hurt shard followers financially.

Finally, BitWeave leverages the same safety assumptions for
epoch leaders as Bitcoin holds for its blocks. Eventually, an
honest epoch leader will be elected and ensures correctness of
the main chain. Thus, the protocol only has to accommodate
Byzantine failure for shard commanders.

3.2 Consensus Abstraction

BitWeaveprovides ageneralizedmechanism that is independent
of the underlying consensus protocol. This allows BitWeave to
leverage advancements consensus protocols that are unrelated
to sharding. Abstractly, blockchain consensus protocols agree
on the order of an append-only log that contains transactions
with some payload.

The underlying blockchain protocol must be able to support
the semantics of a cryptocurrency and provide the notion of
epochs to indicate the passage of time. A cryptocurrency is
necessary formechanisms that incentivized data pods to behave
correctly. A new epoch can be indicated by the mining of a new
block in Nakamoto-based systems or the admission of a new
batch of transactions in a committee-based protocol.

3.3 Blockchain Structure

In general, a participant of a permissionless blockchain system
may invoke certain system behaviors by sending a transaction
request to the network. The network nodes that receive the
request keep it in their local storage until they have verified
it and included it on the chain or have discarded it for being
invalid. In BitWeave, these transaction requests contain a
source and target account and may contain an amount to be
transferred between the two accounts, a function invocation or
both. The issuer of the transaction, i.e. the owner of the source
account, further signs the transaction so that other participants
can verify the authenticity of the request.

BitWeave supports many concurrent shards, each of which
serializes transactions by bundling them into microblocks
and publishing them onto their own distinct chain. These
microblock chains are periodically joined by a keyblock, which
establishes an order between microblocks of different shards.
BitWeave nodes leverage the ordering provided by keyblocks to

establish a happens-before invariant in transaction processing
– specifically, they ensure that all shards approve of a proposed
transaction with a high certainty before it is committed. As a
result, each shard in BitWeave establishes a total order among
its microblocks, while there exists only a partial ordering
between microblocks across different shards.

BitWeave allows different participants of the network to
track only the transaction data of shards they follow. While
the exact layout of the microblock varies depending on the
underlying protocol, it always follows the following structure:
The header contains meta-information and is cryptographically
signed, and the payload includes transaction data. Unlike
Bitcoin-NG, the same transaction might appear in the payload
of multiple microblocks, representing different stages of the
execution of the transaction. The payload of a microblock
contains a sequence of transactions, each followed by a flag
corresponding to the specific action regarding the transaction,
such as COMMIT or RESERVE. In the following section, we
differentiate between shard chains, which contain serialized
transactions, and the main chain, which contains fraud proofs
and delegation information. While the former is prone to
fraud, the latter is protected by Proof-of-Work (or a similar
mechanism). We formalize our definition of fraud in Section 3.7.

3.4 Roles

Participants in the BitWeave network can hold one or more the
following roles: miners, epoch leaders, shard commanders, and
shard followers.

Miners and Epoch leaders Epoch leaders decide whichmicro-
blocks from the previous epoch are included on the main chain,
delegate shard commandership andhandle recovery after detect-
ing shardmisbehavior. Epoch leaders are selected from a pool of
miners through some LEADER process such as Proof-of-Work
or Proof-of-Stake, and publish a key-block to the blockchain
to denote their leadership. Epoch leaders only maintain
meta-information about the chain state – all regular transaction
are handled by shard commanders and shard followers.

Shard followers Shard followers maintain state for a partic-
ular shard and processes the shard’s microblock chain. Each
shard follower thus maintains a subset of the system-wide
chain state. Unlike other roles, the LEADER process does not
select shard followers. Instead, any participant in the network
may opt to follow a shard’s chain and validate operations on
it. When followers detect shard commander misbehavior, they
report it by issuing a fraud proof to the network.

Shard commanders A shard commander is a particular shard
follower that is appointed to process transactions related to a
specific shard. Shard commanders perform the ORDER process
for their shard by serializing transactions into microblocks on
its shard until a new key block is mined. When a key block is
mined, the epoch leader names one shard commander per shard
through their public key.
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3.5 Transaction Processing Overview

Designing a transaction protocol for a sharded blockchain
reduces to two fundamental challenges: dividing work among
shards and ensuring atomicity in cross-shard transactions. At a
high level, BitWeave implements a replicated state machine and
a sound transaction processing mechanism is necessary so that
the system always remains in a consistent state. Transactions
in BitWeave are thus required to be serializable.

We first describe how a system’s transaction workload is
mapped to shards. Transactions in BitWeave are composed of a
non-empty set of operations, where each operation represents
a modification to data and applies exactly to one account.
Additionally, we assume that there exists a function that
derives the set of operations from a transaction. For example,
a money transfer operation consists of a set of decrements on
the source account(s) and a set of increments on the destination
account(s). Because of the sharded nature of the blockchain,
these operations may take place on different shards.

Each shard in BitWeave is responsible for maintaining a
subset of all accounts and for processing operations affecting
that those accounts. The protocol further defines a consistent
hash function [18] that provides a mapping from accounts to
shards. Since transactions generally operate on more than one
account, it is often the case that several shards are involved in
processing a transaction.

The second challenge of sharding is ensuring that all trans-
actions are executed atomically – all shards participating in a
transaction’s execution must unanimously decide to whether
or not to execute the transaction, and that execution needs
to happen in lockstep across all participating shards. For
single-shard transactions, this is trivial because there is a total
ordering of transactions within an individual microblock chain.
Therefore, single-shard transactions are simply included on
their respective chains, just as in Bitcoin-NG.

3.5.1 Transaction Processing Primitives

For cross-shard transactions, BitWeave relies on a variant of the
two-phase commit protocol. In phase one, participating shards
implicitly signal to the rest of the system that they can perform
their share of operations for a given transaction by issuing
reservations. The shard maintaining the source account of the
transaction further certifies that the digital signature associated
with the transaction request is valid. Once reservations have
been issued by each involved shard and seen by all other shards,
the transaction is applied to the involved shards via a commit.
Shards release all issued reservations once they learn of the
commits on the other shards. Section 3.7 describes how this
scheme is extended to handle Byzantine behavior.

Reservations Reservations are a primitive that ensures
serializability of concurrent transactions. Reservations allow
for greater concurrency over traditional locking by allowing
multiple operations to hold locks on an object in some cases.
For example, more than one transaction can spend from the
same account as long as the account’s balance is sufficient. Each

reservation is bound to one specific operation that is intended
to be applied to a single data object. Increasing concurrency
by composing reservations is a crucial feature in BitWeave as
transactions have high latency and traditional locking would
limit throughput significantly.

More concretely, reservations contain a requirement for the
input state of an account, as well as the proposed modification
to that account. Thus, they can be expressed as a pair (a; b)
of a precondition a and a post-condition b and applies to one
specific shard. As an example, money transfers require two
different predicates: (balance ≥ i; balance ← balance − i)
on the spending account and (; balance ← balance + i) on
the receiving account, where i is the amount transferred. This
mechanism is extensible to arbitrary predicates, which enables
BitWeave to execute generalized transactions.

Nodes maintain a reservation set, which is a registry of all
held reservations, as part of a shard’s state. Shard commanders
generate aMerkle-tree containing the hashes of all reservations
and include the tree’s root in each microblock-header. They
apply the same scheme to include the current shard state in the
microblock. Once a shard’s chain admits a new reservation, the
reservation set is updated accordingly.

To admit a new reservation to a shard, itmust be checked both
against the reservation set as well as the stable state of the shard
since it must remain valid in all possible combinations of com-
mits and aborts. Checking a reservation against the exponential
number of states it must remain valid in is infeasible, nodes
maintain an interval of possible values. For the case of account
balances, transactions then are validated against the least
possible account balance as well as the highest possible account
balance to ensure the reservation can be applied in all cases.

Commits and Aborts After a shard has included a transac-
tion’s reservation in its chain, it will eventually either include
a corresponding ABORT or COMMIT entry. Commits denote
that all affected shards have included the required reservations
on their chain. Once a commit has been included in the chain,
shards will release the associated reservations and modify the
chain state accordingly. If a transaction does not acquire all re-
quired reservations in time, shards issue ABORT operations for
the transaction. Once thechain includes theabort, shards release
all associated reservations without modifying the chain state.

3.5.2 Efficient Cross-Shard Communication

BitWeave enables lightweight message passing between shards
by only forwarding relevant reservations from one shard to
another. This allows nodes in the system to verify a partial view
of the total state: Nodes solely follow the full chains of shards
they are interested in and rely on messages from other shards
to reason about cross-shard transactions.

The protocol supports two different kinds of microblocks:
messageblocks and transactionblocks. Amessageblockconcisely
summarizes the results from the previous epoch for other shards.
Transaction blocks admit new transactions to the shard’s chain
or commit currently pending transactions. Shard commanders
must publish a message block at the beginning of each epoch.
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Themessage block contains a hash of the new state andmultiple
payloads, each containing a set of messages for a specific shard.
A message consists of the transaction’s identifier as well as a
Merkle-proof certifying the reservation was acquired.

To efficiently apply this scheme, nodes in BitWeave connect
to multiple relay networks. Namely, there is one main network
that propagates block headers and key blocks, and multiple
shard-specific networks exist that propagate transaction data.
To implement such a scheme, nodes advertise their subscrip-
tions to specific shard upon connecting to other peers. Nodes
then ensure they are connected to a sufficiently large number
of peers for each network.

3.6 Transaction Fees andMiner Rewards

A core component of Bitcoin are built-in incentive mechanisms
for network participants, namely rewards for mining new
blocks and transaction fees for validating transactions. While
the reward scheme for newly mined key blocks can directly be
derived from Bitcoin’s mechanism, BitWeave transaction fees
require a more complex scheme due to the existence of shards
and microblocks. BitWeave treats transaction fees for each
shard independently to reduce the amount of communication
required during transaction execution. Transaction requests
thus specify fees per shard incentivizing users to spread load, as
more congested shards will have higher fees.

BitWeavesplits fees threeways foreachoperationonashard’s
chain, to maximize throughput. The intuition behind this is
merely an extension of the proof provided by Eyal et al. [12].
Their work showed that fees should be split 40/60 between
two consecutive epoch leaders to incentive the current leader
to include as many blocks as possible from the previous epoch.
BitWeave extends this scheme by allowing the current epoch
leader and the current shard commander to split the first 40%
of the fee, the ratio of which is determined between the specific
shard commander and the epoch leader during shard delegation.

Themain chainkeeps trackof a small set of accounts for actors
involved in leader election and transaction processing. For
nodes to be able to become miners or shard commanders, they
need to create a globally viewable account. For miners, this ac-
count is solely used for rewards, while shard commanders need
to put up a deposit to start their tenure as commander. To do this,
they either need to collect funds by mining blocks or by trans-
ferring funds from a shard’s account. Similarly, shard followers
need tomaintain fundson themainchain tobeable to issue fraud
proofs (Section 3.7.2) and availability wagers (Section 3.7.4).
Miners do not parse the entire content of shard blocks to

extract fees but merely the block header, which contains the
accumulated fees. Thus, miners rely on shard followers to
validate the correctness of the fees specified in the shard block
headers. To make this scheme secure, funds created from fees
are locked until the associated transaction is validated.

3.7 Fault-Tolerant Transaction Processing

To address Byzantine failures, such as malicious nodes or net-
work partitions, the protocol assigns an overall timebound to

Confirmation	Period
Reservation	Phase Commit	Phase

Reserve	ISSUE Reserve	CHALLENGE Commit	ISSUE Commit	CHALLENGE

Client

Shard	A

Shard	B

Tx	Request

Reserve	A

Reserve	B

Commit	A

Commit	B

Figure 2: Lifetime of a cross-shard transaction: The transaction
is not considered finalized until all reservations and commits
have been included and validated on all shard chains.

each transaction, the confirmation period, which allows for am-
ple time to verify a transaction’s correctness before it is applied
to its corresponding shards’ state. A transaction is thus atomic
because it doesnotmodify stateuntil it passes through theconfir-
mation period on all shards and all locked resources are released
if the transaction does not get confirmed in time or aborts.

Figure 2 sketches how the confirmation period is broken
down for a cross-shard transaction. As the protocol is an
extension of two-phase commit, we can separate the confir-
mation period into a reservation phase, in which the required
resources for the transaction are locked via reservations, and a
commit phase, in which the transaction is confirmed or aborted.
To account for Byzantine behavior, each phase proceeds in
two stages. The ISSUE stage, where shard commanders issue
acknowledgments on-chain to signify that shard-specific
operations were performed. Then, a CHALLENGE stage, where
Byzantine behavior in the ISSUE stage is amended through a
fraud proof and rollback mechanism (Section 3.7.2) carried out
by shard followers. To ensure that shards are coordinated on
which stage of the confirmation period is occurring, each stage
is measured in a certain number of epochs from the key-block
height at which the transaction was created by the client, the
length of which is mandated by the protocol.

3.7.1 Detecting Fraud

BitWeave depends on shard followers to aid in validating of
transactionsanddetecting fraud. Reservationsandcommits can-
not be immediately assumed to be valid, as malicious behavior
during the ISSUE stage of each phase is resolved during its cor-
responding CHALLENGE stage through fraud proofs submitted
by shard followers. Followers aremotivated toparticipate in this
behavior through built-in financial incentives. Correctness can
be maintained by the presence of a few honest shard followers
and does not require a majority of honest shard participants.

The length of the CHALLENGE stage must be set to a suffi-
ciently large number of epochs, so that an issued reservation,
commit, or abort guaranteed to be correct after its CHALLENGE
stage has passed. Instantiations of the BitWeave protocol thus
set the length of this stage such that it is virtually impossible for
a sequence of malicious epoch leaders to be active during their
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entire duration and to tolerate network propagation latencies.
To determine the length of the CHALLENGE stage, the protocol
sets time bounds for the propagation delay tp and the validation
delay tv , which is the period it takes for at least one honest
epoch leader to be available. The protocol then sets length of the
CHALLENGE stage as a function of these parameters, where
tchallenge = tv + 2 ∗ tp. Additionally, it should hold that the
ISSUE stage is at least as long as tp, to avoid unnecessary aborts.

A concrete implementation, based on Bitcoin-NG, sets those
values to tp =3 and tv =10. We can show that for a validation
delay of ten epochs we show in the probability that at least
one honest epoch leader exists is very high. Assuming, like
previous work, that at most 25% of the mining power (or stake)
is controlled by malicious parties, the following holds.

Pr[“# honest leaders>0”]
=1−Pr[“# honest leaders=0”]

=1−0.25k≈1−9.54∗10−7≈1

This probability is lower than the probability of the chain’s
last k blocks being rewritten by a malicious actor, based on
the proof in the original Bitcoin paper. Bitcoin, like BitWeave,
assumes a tight network propagation bound to ensure timely
convergence of the chain.

3.7.2 Fraud Proofs

At a high level, fraud proofs are messages containing references
to discrepancies in a shard’s chain. The protocol differentiates
between three different kinds of fraud proofs, each relying on a
set of Merkle proofs to concisely demonstrate their correctness.
First, a fraud proof is raised if a shard block is inconsistent with
its header. This can be the case if any of theMerkle-roots are not
consistent with the state stored in the block’s body. Second, if a
transaction block contains a reservation, commit, or abort that is
not consistentwith the shard’s state, a fraud proof is raised. This
can be demonstrated by making the fraud proof contain a snap-
shot of the involved object(s) and reservation(s). Third, a fraud
proof is raised if amessage block contains an invalidmessage, or
misses a message. The former can be shown by demonstrating
that the Merkle proof associated with the message is incorrect,
while the latter is shown by pointing to a commit of the previous
epoch(s) that does not have a corresponding message.

Fraud-proofs are submitted to the epoch leader, and they
enable the epoch leader to correct a shard state by reverting the
history of the shard to the state right before the conflicting block,
thusnullifying the fraudulent transaction. Havingepoch leaders
process fraud proofs ensures that themalicious behavior is recti-
fiedon-chainandensures that everypartywill see thecorrection,
preventing nodes from operating on an invalid shard state.

Fraud proofs, once included in the main chain, override
the shards state. Depending on the kind of fraud, either a
specific block is invalidated, a certain operation is undone,
or the contents of a message are modified. The previously
described CHALLENGE stages ensure that rollbacks do not
affect transactions that are considered committed and valid.

3.7.3 Incentivizing Fraud-Finding Behavior

BitWeave’s incentive mechanism is designed to reward fraud
finders and punish misbehaving shard commanders. Nodes
pay a deposit to become a shard commander, which is withheld
in case they misbehave. In the event that a shard follower
detects misbehavior and successfully submits a fraud proof, the
misbehaving commander’s deposit is forfeited and collected by
the follower.

Further, BitWeave employs two mechanisms to ensure that
rewards are not stolen from honest validators. First, the system
relies on cryptographic commitments to prevent followers from
sending fraud proofs in plaintext. Followers issue commitments
in the form of a cryptographic hash of the fraud proof, and not
the proof itself. Once the main chain includes a commitment,
followers can reveal the fraud proof’s content to collect the
owed reward unless an earlier fraud proof has already collected
the reward.

Like regular transactions, fraud proofs include a fee to
prevent denial-of-service attacks. Fees for fraud proofs render
it infeasible for an adversary to issue many invalid fraud proofs.
Because the fraud proofs rely on cryptographic commitments,
the epoch leader cannot distinguish between valid and invalid
fraud proofs at first; however, it can detect if the issuing party
has enough funds to pay for the fraud proof transaction. Epoch
leaders include fraud proofs independent of their validity and
collect the associated transaction fee to limit the number of
invalid fraud proofs that can be issued.

3.7.4 Ensuring Shard Availability

Similar to how fraud proofs guarantee safety in BitWeave, the
protocol relies on probabilistic sampling and availabilitywagers
ensure liveness.

Honest miners rely on sampling to ensure they only include
shard blocks on the main chain, for a which the payload is
available. First, shard commanders encode their blocks using
Reed-Solomon error correcting codes, so that parts of a shard
block’s payload can be sampled efficiently. Then, instead of pars-
ing the entirety of every block, they sample a small fraction of it
from the network and reject all blocks where that sample is un-
available. Al-Bassam et al. [2] demonstrated that in this setting
queryingas little as1%of ablocks content is sufficient to tellwith
very high probability if it is available or not, andwe refer to their
work for a more detailed description of this sampling scheme.

If a malicious miner includes an unavailable block, followers
issue an availability wager to the main chain requesting a
specific block’s payload to be published. A shard follower that
issues an availability wager must attach funds that represent
their confidence that a commander is misbehaving andmultiple
wagers from different shard followers can be attached to the
same block. If the commander does not reveal the block after
a set time, the challenging follower is rewarded the wager
amount, half taken form the commanders deposit, the rest taken
from the miner that included the unavailable block.

The protocol requires followers to pool funds to ensure
no unnecessary wagers are processed and to provide a shard
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availability heuristic for followers. Upon detecting a potentially
unavailable block, a shard follower issues a wager with some
funds attached. Wagers must reach a certain threshold of funds
before epoch leaders may include them in the chain. When the
wager propagates through the network, other followers can
either opt to attach more funds to the wager or reveal the block
payload to the network if they have access to it. Eventually, the
wager will either collect enough funds to be included in a key
block, or it expires because the block was made available.

If the commander reveals the block in time, the follower’s
wager instead is burned and the protocol proceeds without
change, which ensures that shard commanders do not profit
fromwithholdingblocks. Thus, a rational shard commanderwill
always make their block payloads available as soon as possible,
to ensure their block headers are included in the main chain.

3.7.5 Adaptive Confirmation Periods

The guarantee that there exists at least one honest epoch leader
during each CHALLENGE stage, is not sufficient for all cases. In
particular, a single key block might not be able to hold all fraud
proofs and availability wagers currently in the network. This
problem is exacerbated by the fact that BitWeave makes no as-
sumptions about the correctness of the shard commander. In the
worst case, a single malicious actor could be in control of many
shards,whichwould result in themain chainnot including fraud
proofs before a transaction’s contest or validation stage expires.

The BitWeave protocol is designed to extend a transaction’s
confirmation period in the case of fraud to allow for enough time
to reconcile the chain state using global challenge extensions.
Key blocks contain a flag that indicates whether all fraud proofs
have been processed. If this flag is set, a global challenge
extensions is issues which extends the CHALLENGE stages of
all pending transactions by the validation delay tv . The latter
ensures another honest leader is around in time to process the
remaining fraud proofs. Availability wagers similarly extend
the CHALLENGE stages of the affected shard to allow time
for the newly revealed block to propagate or for the chain to
roll back. This means that an excess of fraud proofs will stall
the overall throughput of the chain to ensure correctness, but
ensures that safety of the protocol is always maintained.

Similarly, BitWeave accommodates shards with overloaded
workloads with commit extensions, which lengthe the commit-
ISSUE stage for currently pending transactions of that shard.
In other words, followers of a shard do not count an epoch
towards the commit-ISSUE stage of a transaction if there are still
transactions to be committed on the shard or if a shard’s epoch
is empty, i.e., no message block is published for that epoch. This
means the confirmation period of all pending transactions is
extended to ensure they’re is ample time to validate all commit
and abort messages.

3.8 Correctness

We provide a proof sketch demonstrating that the BitWeave
protocol upholds safety and liveness, assuming the assumptions

of Section 3.1 are not violated and assuming the underlying con-
sensus protocol behaves as specified in Section 3.2. In particular,
we assume that there is a known bound on the network latency
tp and that the consensus protocol has at least one honest leader
within the validation delay tv . Then the CHALLENGE period
is set to at least 2∗ tp+ tv . Additionally, we assume each shard
has at least one honest follower and the underlying consensus
protocol does not violate safety or liveness.

Our proofs for safety and liveness rely on the following two
lemmas:

Lemma 1: The number of challenges to a particular transac-
tion, in the form of potential availabilitywagers, fraud proofs,
global challenge extensions, and shard commit extensions, is
guaranteed to be finite.

Proof. We first show that only a finite number of availability
wagers can affect a particular transaction. Availability wagers
can only affect a transaction at the ISSUE stage, which is a fixed
number of epochs. Since epochs are finite, the number of blocks
contained in the ISSUE stage is finite. A single transaction has at
most two issue phases, at most one message per shard and will
be involved in a finite number of shards. Thus, the number of
blocks involved in a shard’s ISSUE stage is finite, which means
that the number of potential availability wagers involving this
transaction is guaranteed to be finite.

Recall that global challenge extensions are issued when the
main chain receives too many fraud proofs, and that shard
commit extensions are issued when the number of commits to
be processed exceeds the shard’s capabilities. Global challenge
extensions and shard commit extensions merely extend the
current epoch and do not allow any new transactions. Since
shards (and themain chain) are both assumed to eventually have
an honest commander (or leader) who will continue processing,
the number of global challenge extensions and shard commit
extensions is finite. We see that only a finite number of fraud
proofs that can be issued as all fraud proofs must be issued in
the global challenge and shard commit periods.

Lemma 2: Any given shard will eventually accept new
transactions.

Proof. BitWeave incentivizes shards to accept new transac-
tions through the use of fees. Shards are financially incentivized
to include transactions in their chain in order to collect their fees
as revenue. As there is no base block reward for microblocks,
if shard commanders fail to include any new transactions,
they will fail to make any profit from their work. Therefore,
any shard whose shard commander is rational and honest will
accept new transactions.

A rational epoch leader is incentivized to replace a slow or
non-responsive shard commander. If a shard does not process
transactions, the leader that appointed the shard commander
loses revenue. As a result, any rational epoch leader will be
incentivized to pick responsive shard commanders, and replace
unresponsive ones. A rational epoch leader will eventually
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be chosen due to the assumptions made on the underlying
consensus protocol.

Combining those two facts above, we see that eventually a ra-
tional epoch leader will be chosen and such a leader will ensure
that shard commanders are rational and honest. Consequently,
any given shard will eventually accept new transactions.

3.8.1 Safety

BitWeave guarantees that (1) particular shards do not violate
consistency and that (2) cross-shard transactions are atomic and
consistent. The concrete consistency constraint is defined by
the particular application. E.g., for cryptocurrencies BitWeave
guarantees that account balances are always non-negative.

While a particular shard commander might misbehave, such
misbehavior will be overwritten by fraud proofs on the main
chain before the contest period has passed. As described before,
a shard’s stable state is guaranteed to be safe, while the pending
state might exhibit inconsistencies. That means, only after the
contest period has expired can clients expect the outcome of a
transaction to be consistent and immutable. Transactions that
are not yet fully executed or validated, are considered internal
states of the protocol and should not be propagated to the end
user.

Proof. To prove safety, we first show that all cross-shard
communication happens within a particular time interval that
is pre-set by the protocol. Then, we show that any particular
shard, given the right messages and waiting the appropriate
period, will not violate consistency and will agree on whether
the transaction should commit.

A transaction first starts by reserving the objects that it
will modify. A valid reservation must be included before the
beginning of associated reserve-CHALLENGE stage, and a
CHALLENGE stage is at least 2 ∗ tp + tv epochs long. Shards
must include a message block at the beginning of every epoch.
If they do not, the particular epoch does not count towards a
CHALLENGE stage. It follows from Lemma 2 that the number
of epochs without message blocks is finite. Note that, if the next
message block after a reservation does not include amessage for
that reservation, the associated fraud proof serves as a message
instead. We thus see that for every reservation, a message
is generated at least 2 ∗ tp + tv epochs before the end of the
associated CHALLENGE stage.
After the reservations are made, the transaction is committed

or aborted at the corresponding commit-ISSUE phase. We now
show that messages sent between shards are guaranteed to
arrive before the corresponding commit-ISSUE phase begins.
Shard followers and commanders parse the main chain for
message blocks. Message block headers contain the hash
and shard identifier for each of its payload. As a result shard
followers, and leaders of other shards can always identify the
existence of a message relevant to them. They can then request
themessage or resort to an availabilitywager if it is not available.
As with transaction blocks, the availability wager extends the
challenge period ensuring that it will arrive in time.

Thus far, we have shown that all reservations will be sent
and received by all shards before the corresponding commit-
ISSUE phase. This proves that all cross-shard transactions are
atomic. We now must show that single shard and cross shard
transactions do not violate consistency.

In particular, we show that for every operation on a shard
chain, there exists a finite value k such that once the entry
is buried k key blocks deep, it is guaranteed to be consistent.
Recall that, every operation, e.g., the commit of a transaction,
is recorded in a shard’s microblock. A microblock is only
considered part of the chain after it, or one of its successors, has
been referenced by a key block. Shard followers track the main
chain for block headers. Additionally, they parse all availability
wagers and fraud proofs and adjust their state if they affect
shards they follow.

For every operation part of some transaction T , k is at least
2 ∗ tp + tv , the minimum length of a regular CHALLENGE
stage. If there is a header for a shard block and a shard follower
has not received its payload after tp, they issue an availability
wager. The availability wager will then be propagated to the
network in at most tp. If a valid availability wager extends
T ’s confirmation period by a = 3 ∗ tp + tv , the length of the
CHALLENGE stage plus an additional round trip time to allow
the shard to propagate the block’s payload, we also increase k
by a. It follows from Lemma 1 that the number of the possible
availability wager extensions of this form is finite.

Once a shard follower has received a microblock’s payload,
they verify it. When they receive the payload, there is at least
tp of the contest period remaining. Thus, if the follower finds in-
consistencies, sufficient time remains to generate a fraud proof,
to send it to the main chain, and for the main chain to propagate
it to all participants of the protocol. A fraud proof, invalidates
the affected entry(ies). Invalidated entries are always consistent
with the shard’s state as they do not modify the shard’s state.

This completes the proof for safety.

3.8.2 Liveness

BitWeave guarantees that it will eventually decide to either
commit or reject a transaction (progress) and that it will not
reject all transactions (non-triviality).

Proof. We see that transactions are finalized and either com-
mitted or rejected within a finite amount of time by applying
Lemmas 1 and 2. As there is only a finite number of possible
extensions to a transaction and shard do not generate empty
epochs indefinitely, all parts of a transaction will eventually be
processed by each involved shard.

To prove nontriviality, we apply Lemma 2. Shard comman-
ders that do not generate empty epochs, either include commit
and abort messages for currently pending transactions or reser-
vations for new transactions. Assuming the number of pending
transactions is finite, shard commanders will eventually accept
new transactions.
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4 Case Studies

BitWeave applies to different consensus protocols and data
models, the latter of which we describe in this section. Consen-
sus protocols, both permissioned [5] and permissionless [30],
that provide the abstraction of leader election can implement
BitWeave’s main chain. Because adapting BitWeave to different
consensus protocols is trivial, this section merely discusses
the data model of two popular systems based on Nakamoto
consensus: Bitcoin and Ethereum.

4.1 Applying BitWeave to Ethereum

Ethereum introduced the notion of smart contracts, which allow
for arbitrary programs to be executed as part of a blockchain
protocol. Smart contracts can be viewed as a form of stored
procedures, where each invocation results in the execution of
a transaction. Usually, smart contracts are compiled from a
high-level language to some form of assembly that can execute
in a lightweight environment, e.g. the Ethereum Virtual
Machine (EVM).

BitWeave already supports Ethereum’s account model and
can be extended to support smart contract execution. Clients
prepare such transactions by executing smart contracts on their
local state. From this, they derive a set of reads and writes that
are mapped to BitWeave operations. While pessimistic locking
might be more efficient in a geo-distributed setting, OCC keeps
complexity of the protocol low and still performs well in the
absence of high contention around certain data objects. Further,
note that while end-to-end latency in BitWeave is high, the
latency between client execution and reservation at the shard
can be kept fairly low.

We sketch how this scheme works using ERC-20 [15] token
transfers as an example. ERC-20 is a standard that allows
developers to implement their transferable token using the
Ethereumblockchain. In essence, these token can be transferred
between users and exchanged against Ethereum’s currency
ether. ERC-20 tokens are implemented by a single smart
contract that tracks a mapping from tokens to users. To buy
tokens from another party, one needs to transfer funds to the
account of that party. The remote party then invokes the ERC-20
smart contract to transfer the requested tokens. This three-way
transfer must execute atomically to ensure nobody loses their
ether or tokens without compensation during the process.

A token transfer between two parties, Alice and Bob, is im-
plemented using a transaction that is applied to the two parties’
accounts as well as the token’s smart contract. The transfer of
ether is implemented as before, where a reservation locks funds
on Alice’s and another reservation ensures that Bob’s account
exists. This transaction is then extended to apply another reser-
vation to the smart contract that locks Bob’s token. Once all
three reservations are applied the transaction can commit, and
the respective account and smart contract states are updated.

4.2 Applying BitWeave to Bitcoin

Thus far we have described BitWeave under the assumption
of an account-based transaction model. Now we show that
it is easy to extend BitWeave to accommodate an Unspent
Transaction Output (UTXO) based transaction model, the same
transaction model used in Bitcoin.

The UTXO Transaction Model The UTXO model represents
an entity’s wallet as a set of UTXOs, each with its public identi-
fier. This model significantly reduces the complexity of the data
model that transactions execute on, but prohibit storing custom
state and procedures as part of the accounts. Platforms that are
focused on monetary transactions, such as Bitcoin or ZCash,
often rely on theUTXOmodel. Transactions in theUTXOmodel
work similarly to a voucher system in which some input vouch-
ers are exchanged for new vouchers of the same or lesser value.
More concrete, transactions consume UTXOs (the unspent
outputs of a previous transaction) and produce new UTXOs.

While in the account model data is sharded by account-id, in
the UTXO model we can directly shard by transaction outputs
to keep the number of shards involved in the transaction low.
Therefore, a new transaction t with input UTXOs u1,u2,...,un

is assigned to the shards responsible for the transactions that
produced its inputs. To keep the number of shards involved in
a transaction low, we then pick the identifiers of the transaction
outputs such that they map to shards that contain one or more
of the transaction’s input.
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Figure 3: Statistics of UTXO inputs to Bitcoin transactions
between September 1, 2018, to March 1, 2019. Most Bitcoin
transactions only have one input.

BTC Transaction Survey We surveyed the BTC transaction
history for a snapshot of six months, from September 1, 2018, to
March 1, 2019,which includes a total of49,413,279 transactions.
Figure 3 shows this data in more detail, fromwhich we can infer
that the majority of recent BTC transactions (almost 80%) take
in only 1 input, and the mean number of inputs to a transaction
from the time series surveyed is 2.248. Therefore, given this
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empirical data and the sharding approach proposed above,
the number of shards involved for an average BitWeave-BTC
transaction is expected to be less than 3.248 shards (Assuming
an average transaction’s inputs are all from different shards and
are unique from the transaction’s output shard).

5 Experimental Evaluation
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Figure 4: Scalability of BitWeave with increasing number of
shard commanders

0 1 2 3 4 5 6 7 8

Number of Shard Commanders

0

5000

10000

15000

20000

25000

30000

35000

40000


ro

u
g
h

p
u

t 
(o

p
s 

/ 
s)

0

1

2

3

4

T
ra

n
sa

ct
io

n
 C

o
m

p
le

x
it

y
 (

o
p
s 

/ 
tx

)

Figure 5: Total rate of operations (prepare, commit, abort) with
increasing number of shard commanders
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Figure 6: Overhead generated by sharding: We increase the
number of logical shards while keeping the number of shard
commanders constant

To have a realistic assessment we simulate a geo-distributed
blockchain network for all experiments. All nodes are con-
nected to a relay network, similar to how blockchain networks
are connected through relays such as FIBRE [7]. The network

simulates four different geographic regions with up to 100ms
latencies between them. We run 200 miners with equal mining
power ensure that a realistic number of forks are generated.
Note, that current blockchain systems have usually about 10 to
20mining entities with enoughmining power to compete in the
consensus protocol [16].

Each experimental runexecutes for about twohours to accom-
modate BitWeave’s long living transactions. We then evaluate a
period of 30 epochs in themiddle of the run so that themeasure-
ment contains a mixture of reservations, commits, and aborts.

To assess the scalability of BitWeave, we configure a test
setup that is bottlenecked on the processing power of the shard
commanders to assess this. For each shard commander we
allocate a distinct x1e.xlarge instance on Amazon EC2, which
has 4 virtual CPU cores and 122 Gigabytes of RAM. The large
memory requirement is not a limitation of the protocol, but a
shortcoming of the prototype implementation which keeps all
pending transactions in RAM.

In this experimental setup, we increase the number of logical
shards and the rate at which new transactions arrive in the
network with the number of physical shard commanders. In
particular, we double the number of shard commanders at every
configuration. For each configuration we ran three iterations of
the same experiment.Additionally, we set the number of logical
shards in the experiment equal to the number of shard comman-
ders to get a fair comparison as each logical shard introduces
more work for processing and executing transactions.

An excess of transaction requests creates additional veri-
fication work for transactions that will not be processed in
time, while a low number of transaction requests results in the
throughput of the system not being fully utilized. We thus set
the rate of incoming transactions such that the CPUs are fully
utilized on each shard. Clients issue a steady sequence of trans-
actions sending money from the client’s account to some other
uniformly-sampled account. We increase theworkloadwith the
number of shards by increasing the number of client machines
issuing requests. This ensure that clients are not the bottleneck.

5.1 How well does BitWeave’s overall throughput
scale?

Figure 4 shows how the throughput of the blockchain network
as a function of the number of shard commanders. We evaluate
the networkwith up to 8 shards, where the network can process
over 9,000 transactions per second. In particular, throughput
scales linearly at a constant rate of about 1.6. Note, that
executing BitWeave with a single shard is equivalent to the
behavior of the Bitcoin-NG protocol.

From these results, we can conclude that assuming the
existence of an efficient relay network, BitWeave’s throughput
is solely limited by the processing power of the shard comman-
ders. More concretely, our experiments revealed that the major
bottleneck occurs when transactions are issued and have to be
verified by nodes they execute on. While there is theoretical
upper bound for the amount of scalability possible, when
verifying block headers generates a significant overhead, butwe
expect this limit to be far from reach for current configurations.
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Further, the computing power of the machines running the
shard commanders is rathermodest andmore efficientmachines
would probably yield even better overall throughput. Finally,
the network bandwidth utilized by any blockchain node in any
configuration was strictly below 20 Mbit/s. Thus, BitWeave can
scale to support realistic workloads in a real-life environment.

5.2 How does sharding affect the transaction foot-
print?

Figure 5 demonstrates how transaction complexity, i.e., the
number of operations involved in a single transaction, increases
with a higher number of shards. If the number of shards is
increased, more transactions execute across multiple shards.
A cross-shard transaction consists of four operations (two
reservations and two commits) and potentially more if a
transaction needs to be aborted and resubmitted. Because of
this, the transaction complexity stabilizes at slightly above four
operations, while the number of total operations keeps doubling
when the number of shards doubles.

5.3 What is the overhead generated by cross-shard
messages?

To determine the overhead of cross-shard messages on the
throughput, we conduct a microbenchmark where a single
shard commanders executes a varying number of shards. Figure
6 shows the result. While more shards allow for more concur-
rency, they also generate more metadata on the blockchain.
This overhead is especially salient when moving from one to
two shards. After that, the penalty stays roughly constant as all
transactions touch at most two shards.

5.4 Howwell does the protocol handle failures?
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Figure 7: Performance with regard to fraud proofs. We run a
single shard and gradually increase the frequency of transaction
blocks that are invalidated.

We evaluated a microbenchmark which simulates shard
failures to determine the overhead introduced by applying
fraud proofs to the chain. In this experiment, we keep the
client workload constant while introducing a steady sequence
of fraud proofs into the network and observe how they affect
performance. Here, each fraud proof invalidates an entire trans-
action block (i.e., hundreds of operations) to simulate large scale

failures. We further evaluate performance with a single shard,
so that shard commander failures have the highest impact.

Figure 7 shows that the performance degradation is negligible
during failures, as in a real-world setting the fraud rate would
most likely not exceed one failure a second. The intuition
behind this result is that discarded operations do not necessarily
cause an abort, but extend the transactions challenge period
and allow the new shard commander to resubmit the operation.
Because the performance is mostly dominated by verifying
transactions, shard failures come with a rather small penalty on
the throughput generated by the re-issuing of operations and
the increased key block size.

6 RelatedWork

6.1 Byzantine Fault-Tolerant State Machine Replica-
tion

Practical Byzantine Fault-Tolerance (PBFT) [5] was one of the
first Byzantine fault-tolerant consensus protocols and is stil
widely used today. Several improvements to PBFT have been
proposed over the last years. For example, Zyzzyva [22] avoids
the third round ofmessages in the absence of failures using spec-
ulative execution. Aardvark [6] adds additional robustness by
making clients digitally sign their requests and frequently rotat-
ing leadership. HotStuff [41] reduces message complexity dur-
ing leader election among other modifications to the protocol.

6.2 Sharding Database Systems

The concepts of sharding and distributed transactions have
been widely studied with regard to conventional database
systems. Sharding was first popularized by systems like
Chord [36] and Mercury [3]. Later work introduced systems,
such as Chubby [4], that provide serializable transactions on
top of sharded systems. More recent work aims to improve
the performance by reducing coordination [9, 29] or relying on
loosely synchronized clocks [8].

6.3 Sharding Blockchains

Several other sharding solutions have been proposed for
permissionless and permissioned blockchain systems.

Monoxide [40] is an approach that has some similarities with
BitWeave. Monoxide breaks up the workload across indepen-
dent “consensus zone”, eachhaving its own set ofminers. Unlike
BitWeave, Monoxide does not support generalized transactions,
but only money transfers between exactly two accounts. For a
cross-zone transaction, the transactions arefirst processed in the
sourceaccount’s zoneand then forwarded to the targetaccount’s
zone together with aMerkle proof of the transaction’s inclusion.
At some point, the transaction will be included in the source
and the target zone, however, the protocol does not provide an
upper time-bound for this. InBitWeave, the confirmationperiod
provides a time-bound for when a transaction is expected to
be confirmed. Furthermore, the transaction processing scheme
proposed inMonoxide is susceptible to recursive invalidation of

12



dependent transactions in the case of zone-forks. In BitWeave,
keyblocks create consistent cutswhich, in combinationwith the
validation delays, prevent such issues. Another challenge with
Monoxide’s design is that its independent zones naturally parti-
tion the mining power of the blockchain system, which dilutes
the overall security of the system. The authors address this by
assuming the majority of miners will work on all zones at the
same time, which requires miners to possess large amounts of
processing power for verification to maintain the same security
guarantees as Bitcoin. This encourages mining centralization
for high throughput, giving up the key property of blockchains.

Elastico [26], OmniLedger [21], and Chainspace [1] are in
a similar class of scalability solutions that propose dividing
the nodes in a system into small committees, each of which
performs a Byzantine consensus protocol for intra-shard
consensus. The Elastico protocol, the first of such solutions,
proceeds in the following fashion: protection against Sybils
is achieved using an “identity chain” based on Proof-of-Work.
It then pseudo-randomly assigns nodes to committees that
perform PBFT in rounds until all the nodes in the system
agree on a final change set to be committed. The protocol then
re-assigns committees and restarts the process for the next set
of transactions. Chainspace assumes a permissioned system
and does not discuss shard committee selection.

OmniLedger makes further improvements on top of Elastico,
such as using RandHound to better seed for randomness
in shard assignments and helps ameliorate some security
compromises introduced by Elastico’s small committee sizes.
However, OmniLedger still adds several layers of complexity to
public blockchains. This complexity is especially salient when
examining the need for OmniLedger to have day-long epochs
because of the amount of overhead required for bootstrapping
at the beginning of an epoch, which makes it susceptible to
quick-responding attackers.

Zilliqa [37] shards transactions, but not state. They rely on a
similar mechanism as Omniledger to assign nodes to shard, but
on a different cross-shard commit protocol. Instead of splitting
the state of the system across shards, they only split the transac-
tion workload and replicate state among all nodes. Each shard
then processes a subset of all transaction for a specific epoch,
and merges their resulting state with other shards at certain
checkpoints. At a high level, the protocol allows a particular
shard to lock parts of the state to prevent concurrent modifica-
tion of the same data entries. Zilliqa relies on a dataflow-based
programming model to implement this scheme efficiently.

6.4 Sidechains and Off-ChainMechanisms

Yet another category of scalability solutions for permissionless
chains is that of federated chains, or side-chains,which solutions
layered on top of existing blockchain systems. In general, these
solutions lock funds on some existing system and facilitate the
fast transactions between parties through an off-chain protocol.
Only the amount locked on the base chain is allowed to be
exchanged in these systems, and a tally of balances is kept for
when it is time to settle. On settling, the amount apportioned to
the settler as denoted by her balance in the sidechain is unlocked

on the main chain and returned to the settler. Plasma [34]
is one notable example of a side-chain that can be anchored
onto Ethereum. Payment- and state-channels [35, 25, 28]
build networks of peer-to-peer relationships to process certain
operations without the involvement of the main blockchain.

These approaches are similar to BitWeave at first sight, but
differ significantly in functionality and safety. First, BitWeave
is a holistic protocol that ensures the main chain is always
able to process fraud proofs. Most side channel protocols, on
the other hand, assume the main chain will always be able
to process fraud proofs, which might not be true during high
contention. Second, BitWeave allows natively supports smart
contracts. While state channels do support smart contracts,
they are currently very limited in programmability and require
knowing all participants of an off-chain contract at setup.

6.5 Audit Mechanisms

Fraud proofs were first introduced in work auditing centralized
services [42, 24, 27], such as a filesystem. Here, the centralized
system provides an auditable log of modifications to its clients.
Clients communicate through channels hidden from the cen-
tralized service to exchange the log data they receive from the
service and detect discrepancies in the log. Unlike blockchains,
this line of work does not provide mechanisms to recover
from Byzantine failures but just means to detect them. The
underlying assumption is that rational operators of service will
not perform fraudulent behavior knowing they will be caught.
Recent work, such as BlockchainDB [11], Arbitrum [17], and
FalconDB [32], has extended this scheme to include replication
and failure recovery coordinated by a global blockchain.

7 Discussion and FutureWork

7.1 Shortening CHALLENGE Stages

Recent work investigated how to reduce confirmation times in
Bitcoin. ByzCoin [20] reduces confirmation times by establish-
ing a set of validating nodes. Members of validator committee
are selected by observing which entities mined the last n blocks
on some identity chain based on PoW. These validators then
issue blocks using a conventional quorum based consensus
protocol. Thunderella [31] makes this scheme more resilient
against churn, i.e., validators leaving and rejoining the network.
The ByzCoin approach is directly applicable to BitWeave. Here
a committee generates key blocks that are guaranteed to be
benign, which reduces validation time from 6 epochs to just one.

Another way to reduce CHALLENGE periods signifi-
cantly is to tighten to bound on network propagation delays
through more efficient relay networks. Currently, BitWeave
assumes a network propagation delay of about three minutes.
BloXroute [19] is one approach to reduce delays through a
centralized but untrusted relay network. Similar to solutions
layered on top of a blockchain, these “layer 0” solutions are
orthogonal to BitWeave.
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7.2 Reducing Chain Size

A common problem with blockchains is that they continuously
grow in size, which results in a large storage overhead for nodes
participating in the protocol. This problem is exacerbated in
high-throughput blockchains, such as BitWeave, as significantly
more transactions are admitted to the chain.

BitWeave can enable nodes to reduce storage size signifi-
cantly through on-chain snapshots. Snapshots allow nodes to
track a lightweight representation of the blockchain’s stable
prefix. Shard commanders regularly publish a snapshot that
encapsulates the current state of the shard. Once the snapshot
has been validated and is buried deep enough in the chain to be
considered stable, nodes discard all microblocks of that shard
up until the snapshot. They merely maintain a representation
of the main chain that verifies that the snapshot has been
generated by an authorized source and no fraud proofs have
been raised against it. Assuming the number of accounts stays
the same, this stops the blockchain from linearly growing with
the number of transaction to some constant size.

7.3 Adapting to ChangingWorkloads

The workload of a blockchain varies, which can affect
BitWeave’s performance and safety. For example, when a token
goes on sale many clients may issue transactions for a specific
smart contract. This is a problem because one shard commander
might not be able to process all the incoming requests. On
the other hand, if overall the number of transactions and thus
active participants in the network declines, there may not be a
sufficient number of validators per shards to ensure safety.

The BitWeave protocol can be extended to support a varying
number of shards to address this. As in conventional database
systems, we differentiate between virtual shards, which are of
a constant number, and logical shards, that contain one or more
virtual shards and are assigned to logical shards [36]. Logical
shards are then assigned to a single validator like before. Nodes
that get assigned to a different shard leverage snapshots so that
they do not have to parse the entire shard’s chain.

We propose a load balancer function as part of the BitWeave
protocol that follows a similar mechanism as the difficulty
adjustment in Bitcoin. While the difficulty adjustment in
Bitcoin is a function of epoch length, the load balancer in
BitWeave is a function of the number of transactions in and
length of the last epoch. The function deterministically defines
how many logical shards are supposed to exist and how the
virtual shards are assigned to them. A lower number of logical
shards reduces the amount of concurrency in the system while
allowing for easier validation of shard commanders.

8 Conclusion

This paper introduced BitWeave, a blockchain protocol that can
scale linearly with the number of shards while maintaining
Byzantine fault-tolerance. BitWeave’s core design goal is to al-
low small entities to participate in the consensusmechanism, ar-
guably the key property of public blockchains. The protocol fur-

therprovidessound incentivemechanismsandthesamesecurity
as Bitcoin. Unlike previous solutions, the protocol does not di-
lute mining power and supports a fully decentralized network.
Our experimental evaluation of BitWeave shows that it can sup-
port realisticworkloads and is flexible enough to be applicable to
a wide variety of blockchains, including Bitcoin and Ethereum.
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