A Vision for Autonomous Blockchains backed by
Secure Hardware

Kai Mast

Cornell University

Abstract

Blockchains have emerged as a potential mechanism to en-
able immutable and consistent sharing of data across or-
ganizational boundaries. While much of the discussion on
blockchains to date has been structured around public ver-
sus permissioned blockchains, both of these architectures
have significant drawbacks. Public blockchains are energy
inefficient, hard to scale and suffer from limited through-
put and high latencies, while permissioned blockchains de-
pend on specially designated nodes, potentially leak meta-
information, and also suffer from scale and performance bot-
tlenecks. This raises the question if blockchains, in their cur-
rent form, are the only class of datastores that can provide
such strong integrity guarantees.

We introduce autonomous blockchains, an architecture
based on free-standing, immutable, eidetic databases that
implement independent timelines, linked together through
interactions. Autonomous blockchains can be realized using
trusted execution environments in combination with audit
mechanisms. This architecture does not only provide block-
chain-like integrity and auditability guarantees but also sup-
ports storing and querying private data. Further, multiple
autonomous blockchains can be linked together through fed-
erated transactions to exchange data and order mutual oper-
ations. These transactions are amenable to audits and yield
tamper-proof witnesses. Evaluation shows that this design
can achieve high throughput while providing stronger in-
tegrity guarantees than conventional datastores.

CCS Concepts - Security and privacy — Management
and querying of encrypted data; Information account-
ability and usage control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SysTEX 19, October 27, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6888-9/19/10...$15.00
https://doi.org/10.1145/3342559.3365333

Lequn Chen
University of Washington

Emin Giin Sirer
Cornell University

ACM Reference Format:

Kai Mast, Lequn Chen, and Emin Gin Sirer. 2019. A Vision for
Autonomous Blockchains backed by Secure Hardware. In 4th Work-
shop on System Software for Trusted Execution (SysTEX °19), Octo-
ber 27, 2019, Huntsville, ON, Canada. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3342559.3365333

1 Introduction

Many high-value applications require reliable and immutable
storage of data across multiple distrusting parties [13, 35,

39]. These applications are characterized by integrity require-
ments wherein each party must abide by pre-defined poli-

cies. Conventional databases cannot live up to this challenge,

as they require trust in the entire application stack and host

operating system(s) by all parties. Earlier work focused on

accountable systems [23, 37], which ensure integrity by al-

lowing clients to audit the log for states they have observed

previously. But audit mechanisms by themselves cannot pro-

tect against third-parties accessing the data.

Blockchains have recently emerged to fill this void by
providing an immutable, i.e. append-only, data feed across
a trustless network of peers. Public/permissionless block-
chains [29, 36] operate across an open network and achieve
consensus through mechanisms known as proof-of-work or
proof-of-stake, both of which require massive replication of
data and computation in their current form. Thus, public
blockchains are energy inefficient, hard to scale and suffer
from limited throughput and high latencies [11]. Further,
due to their open and distributed setting, they cannot be
used to store private or confidential data. Private/permis-
sioned blockchains [7, 28], on the other hand, achieve con-
sensus across a pre-defined committee [8, 19, 24]. This ap-
proach necessarily requires specially designated committee
nodes, often leaks meta-data, such as which clients inter-
act with which others, at what frequency, and is limited in
performance as existing protocols require all-to-all commu-
nication across participants.

The main contribution of this paper is to outline our vi-
sion of autonomous blockchains, a class of data stores that
provide a self-standing, permanent, tamper-proof event-log
of all transactions and data, and allow to facilitate confiden-
tial computations on such data. We consider a system as sys-
tem as self-standing if it does not rely on an external consen-
sus mechanism to operate. The central abstraction provided
by autonomous blockchains is an append-only log [9]: past
states are unchangeable, and new states are only appended

https://doi.org/10.1145/3342559.3365333
https://doi.org/10.1145/3342559.3365333

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

to the log. Building on this foundation, autonomous block-
chain instances can operate independently, as a “blockchain
of one,” and, optionally, allow data sharing with other block-
chain instances.

Data and computation across different autonomous block-
chains can be linked together through federated transactions.
This architecture thus enables creating networks that share
designated data items and executing computations on re-
mote parties. This is in stark contrast to conventional block-
chains, which replicate all data across all nodes. As a result,
communication between autonomous blockchain nodes is
kept minimal.

Autonomous blockchains support application-defined poli-
cies [20, 34] and introspecting functions, which, in turn, en-
ables mutually-distrusting parties to interact. Specifically,
autonomous blockchains allow every object to be insepara-
bly associated with a semantic security policy. Policies are en-
coded symbolically as abstract syntax trees, which enables
applications to analyze the policy and establish trust in the
future behavior of that object. Policy enforcement can be
leveraged to guarantee confidentiality as well as integrity.
For instance, blockchains may restrict modifications to a
bank account those issued by the specified owner and ones
that do not result in a negative balance.

To enable privacy preserving data queries, autonomous
blockchains support protected function evaluations, read-only
transactions that compute functions over remote private
data [16, 38]. The primary use of this functionality is to ex-
ecute a vetted function without revealing the input data to
the remote party. Like with any other transaction, the holder
of the data retains full control over what can be done with
the data and both parties can vet the function a priori.

The usage of hardware-based trusted execution environ-
ments (TEEs) enables nodes to trust another participant’s
computation without trusting the administrator of that sys-
tem. Audit mechanisms prevent malicious actors from rolling
back the TEE’s state and ensure that each blockchain node
only runs a single TEE. Because each service can run their
own blockchain backed by a TEE, the throughput scales with
the number of nodes in the system.

2 The Autonomous Blockchain Model

At a high level, every autonomous blockchain implements
a secure database that clients, as well as other nodes, can
connect to. Each blockchain instance maintains a distinct
ledger, comprising a timeline of events and a datastore. An
autonomous blockchain connects to other chains to create
a network across which data can be shared, and functions
can be invoked, securely. Clients connect to the network
through one or multiple such blockchain instances and do
not need special hardware support. Providing a conventional
database interface allows for straightforward porting of ex-
iting applications to this new abstraction. Nodes and clients

Kai Mast, Lequn Chen, and Emin Giin Sirer

rely on a public attestation service to ensure integrity and
authenticity of database nodes. Attestation services provide
a public-key infrastructure to ensure the authenticity of par-
ties but do not gain access to private data.

Applications are written against an interface that is a su-
perset of a transactional key-value storage APIL They either
interface with the datastore through a secure network con-
nection or execute inside the datastore’s TEE in the form of
policies and stored procedures.

2.1 Assumptions and Attack Model

Following previous work [3] we assume a powerful attack
model: an adversary might have root access to the database
server, including full control over the scheduler, the file sys-
tem, and network communication. The attacker may tamper
with the hardware, except for the CPU itself.

We further assume that clients and database administra-
tors distrust other parties in the system. This means princi-
pals need assurance that data can be modified only by par-
ties they specify. Further, they demand control over what
information is leaked to other parties, including the data-
base administrator.

We assume that every autonomous blockchain implemen-
tation has access to a TEE. In particular, we assume that as
long as the CPU itself is not tampered with, TEEs have the
following functionality. First, application data is protected
from third-party access. Second, a third party cannot influ-
ence the execution of the TEE, except for how many CPU
cycles are allocated to it. Third, the TEE can prove remotely
that it is functioning correctly and has not been compro-
mised (remote attestation).

2.2 Objects and Transactions

Autonomous blockchains expose a flexible object model that
accommodates unstructured, as well as structured, data. Ob-
jects are collections of attribute-value pairs, where attributes
have types such as lists, dictionaries, strings, binary data,
and numeric values. Binary data can contain executable code
representing stored procedures. Each object belongs to a col-
lection (similar to tables in relational datastores).

Each blockchain maintains a partially-ordered log of trans-
actions, each relating to one or more objects. As such, for
each creation, update, or deletion of an object, the ledger
holds a record of a corresponding transaction. Transactions
store the new values of all updated objects. In the case of a
deletion, the new value is a tombstone entry L. Transactions
relating to the same object are arranged in a total order to
guarantee linearizability [15]. Further, in case events are cre-
ated by a transaction that spans multiple objects, an event
may also capture the dependencies between versions of dif-
ferent objects. Crucially, unrelated events are not ordered
with respect to each other.

A Vision for Autonomous Blockchains backed by Secure Hardware

2.3 Protected Function Evaluation

Another key primitive supported by autonomous blockchains
is protected function evaluation (PFE). PFE enables parties to
invoke a custom function on a remote node in a secure ex-
ecution environment guarded by the TEE. This way, data
protected by the TEE remains private to the trusted envi-
ronment, and only the designated result of the function call
is revealed to the caller.

Since computations on private data have the intended goal
of retrieving some information extracted from that data, they
need to be vetted to ensure that this leakage is permissible
to all parties. Autonomous blockchains employ two mech-
anisms to perform this vetting. This can be done by check-
ing the functions hash against a whitelist or by formally an-
alyzing the program code. Much past work concerns itself
with the analysis of function properties, including for infor-
mation leakage [12] and information flow [25], so the mech-
anisms of this vetting are beyond the scope of this paper. In
addition, every single object retrieved during a PFE has its
semantic security policy checked on every access.

After successful execution, the calling party receives a
witness containing the function identifier and a certified re-
sult. Autonomous blockchains identify functions through
the hash of their bytecode, similar to how the Ethereum Vir-
tual Machine operates. The witness is signed by a persistent
key associated with the blockchain instance of the executing
party, which allows any third party to verify the authentic-
ity of the result.

This design imposes minimal structure on witnesses. In
particular, it deliberately leaves freshness guarantees up to
applications — autonomous blockchains do not purport to
provide a global clock or a total order of events. The critical
observations behind this decision are threefold. First, no sin-
gle notion of time can serve every application. Some applica-
tions may operate on a sub-microsecond granularity, which
could entail inordinate overheads, while others keep track
of events in a more coarse-grained manner. Second, even if
there was a time granularity that one could pick for most ap-
plications, current technologies for providing a trusted time
source into a secure execution environment provide much
weaker guarantees than the TEE itself, because they rely on
additional hardware outside of the CPU die [10]. Finally, it
has been our experience that most applications can be imple-
mented using simple happens-before relationships between
affected objects.

2.4 Semantic Security Policies

Semantic security policies allow associating application-

specific constraints with an object. These policies are insep-
arable from the object to which they belong and inviolable
even by the principal controlling the database instance. To
access the database, a user must necessarily go through the
blockchain’s policy enforcement engine mandated by the

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

TEE. Thus, even an attacker who takes over the database
cannot subvert the access policies associated with objects. In
the case of accessing a previous version of the object, that
version’s policy and state will be used to make an access
control decision.

Each autonomous blockchain maintains a registry of iden-
tities, which can be leveraged by policies to make an ac-
cess decision. Identities are tuples consisting of a human-
readable name and a public key. This registry is used to pre-
vent man-in-the-middle and impersonation attacks. We as-
sume a public key infrastructure (PKI) that nodes can rely
on when connecting to previously unknown parties.

Identities are inseparable from the associated authenti-
cated communication channel. In particular, nodes cannot
change their identity after a connection has been set up.
Costly authentication and attestation have to be performed
only once when setting up the channel. After successful at-
testation, policies can always rely on the authenticity of the
referenced identities.

Policies are specified at the time of an object’s creation
and can be modified after the fact only if the policy permits
it. And changes to a policy are stored in the object’s timeline
just like changes to all other fields of the object. Accesses to
an object’s value in the timeline leads to the evaluation of
the object’s policy at that point in time. To enable this, auto-
nomous blockchains require policies to be idempotent, i.e.,
they may not have any side effects or refer to the state of
other objects. Policies have access to an interface that ex-
poses information about the attempted operation and the
affected object(s).

Autonomous blockchains further allow associating a pol-
icy with a collection to enable richer application semantics.
Such collection policies may, for example, specify who can
create or modify any object in the collection. Further, they
can enforce a schema on the data, by rejecting all updates
that miss required fields or contain fields in an invalid for-
mat. Collection policies thus allow to break down applica-
tion logic into multiple concurrent objects without sacrific-
ing integrity.

2.5 Witnesses and Fraud Proofs

Even backed by a TEE, autonomous blockchains are still
beholden to the database administrator (DA), which we ad-
dress in this section. DAs are entities that configure and runs
a specific blockchain instance. Aside from configuring the
TEE itself, the DA is also in charge of replicating the on-disk
state of the blockchain to provide fault-tolerance. In partic-
ular, if the machine running the TEE becomes unavailable,
they can restart the blockchain instance using the replicated
disk-state on the same or different physical machine.
While the DA cannot arbitrarily change stored data, ac-
cess to the machine which the enclave runs on enables them
to pause, rollback, or clone the TEE at any point in time. The
database state may be encrypted, cryptographically signed,

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

and replicated, but is stored on untrusted hardware, which
can be exploited by the DA to roll back to a previous state.
Similarly, a DA may attempt to run multiple instances of
the same blockchain node to provide different views of the
world to different parties. Mitigations for these attacks exist,
such as monotonic hardware counters or Byzantine fault-
tolerant replication schemes, but are too slow or require
trust in third parties.

The autonomous blockchain abstraction includes the no-
tion of fraud proofs, which demonstrate misbehavior of a
DA. Entities that interact with the blockchain instance col-
lect records of its behavior in the form of witnesses. If ma-
licious behavior is detected, it can be demonstrated using
two conflicting witnesses. For example, if the DA runs more
than one TEE with the same key, the witnesses might cer-
tify two different database states at the same point in time.
A fraud proof then is merely a certificate containing the set
of conflicting witnesses.

The autonomous blockchain architecture leverages
economic incentives in combination with fraud proofs to en-
force the correct behavior of DAs. In scenarios where we en-
vision the deployment of autonomous blockchains, the DA
is typically a well-known counterparty, in a legal relation-
ship, that can be held accountable. Aside from allowing for
legal actions using fraud proofs, we envision a kill switch in
the form of a fraud proof. Here, an enclave will shut down
after receiving a fraud proof, which provides a strong neg-
ative incentive for a DA that wants to keep the blockchain
running to maintain their revenue stream, thus they are in-
centivized to not conduct fraudulent behavior.

Clients may further leverage witnesses to overcome the
lack of availability of a blockchain node. Witnesses enable
to bootstrap a self-standing, read-only snapshot of the user
data. For data items that are not protected by security poli-
cies, witnesses can provide the data in the form of a digital
signature. For other data, witnesses allow bootstrapping a
local trusted execution environment, where the data is pro-
tected by the same policies as in the original datastore. This
scheme is analogous to clients storing blocks locally in con-
ventional blockchain systems.

3 Prototype Evaluation

We implemented and evaluated a fully-functional prototype
of an autonomous blockchain in the form of CreDB. The
main takeaway from the result in this section is that while
the overheads associated with this kind of secure hardware
are significant, they can be mitigated using efficient imple-
mentation and paging techniques.

The prototype uses version 2.1.2 of the Intel SGX SDK
and is compiled using GNU g++7. Evaluation is done using
two kinds of hardware. First, a big configuration that pro-
vides 32GB of RAM and an Intel Core i7 6700K CPU offering
8 logical cores. Second, a medium configuration providing

Kai Mast, Lequn Chen, and Emin Giin Sirer

800
700
CreDB (no SGX)

6001 CreDB

500+

Total Throughput (transactions/s)

10 20 30 40
Number of Concurrent Clients

Figure 1. CreDB’s performance on TPC-C under a changing
number of clients compared to CreDB without SGX

16GB of RAM and an Intel Xeon E5420 CPU offering 8 log-
ical cores. Both configurations run Ubuntu 18.04 based on
Linux 4.15. For all experiments, a single server is hosted on
the big configuration while clients execute across multiple
medium configurations.

We expose CreDB to a TPC-C workload and compare it to
a version of CreDB that doesn’t run in SGX. The experimen-
tal setup contains four warehouses and a dataset of about
one gigabyte. Intel will most likely provide hardware with
much larger EPC sizes in the future. We thus assume that
the chosen dataset size is indicative of how future versions
of CreDB will perform on larger datasets. For CreDB, data
is stored normalized. In particular, each order is a distinct
object and not part of the client’s record.

Figure 1 shows both systems over a changing number of
clients to visualize the impact of limited amounts of pro-
tected memory. We observe that each system scales up with
an increasing number of clients. However, CreDB’s through-
put quickly reaches its peak of about 500tx/s. We pinpoint
this limitation to the fact that once the EPC memory size
is exhausted, threads will start competing for memory. The
variant of CreDB without SGX yields in about twice the per-
formance until concurrent transactions become the main
bottleneck.

4 Related Work

Software-Based Attacks on TEEs Side-channel attacks,
which is attacks that observe the application’s behavior
through non-standard communication, such as looking at
its CPU or cache usage, are of constant interest in the secu-
rity community. Thus, several papers have addressed how
the confidentiality of trusted hardware enclaves can be bro-
ken using such attacks [32]. Most of these attacks benefit
from the fact that weak cryptographic code, e.g., where ap-
plication secrets modify the control flow, is executed inside
the enclave. While preventing CreDB nodes from side-channel

A Vision for Autonomous Blockchains backed by Secure Hardware

attacks is beyond the scope of the paper, all cryptographic
code in the enclave is implemented using constant-time li-
braries. Still, we expect future versions of CreDB will need
to be amended as other such side-channel attacks are dis-
covered.

Further, it has been shown that speculative execution on
Intel CPUs can be exploited to leak private information of
processes and even SGX enclaves [6, 18]. Some of these at-
tacks can be mitigated by upgrading the microcode of Intel
CPUs, while others require to disable certain features such
as HyperThreading. This means mitigating such attacks
comes with a noticeable amount of performance loss. How-
ever, an autonomous blockchain is orders of magnitudes
faster than other blockchain systems, which means it will
still perform well compared to other systems with the miti-
gations applied. We further assume the usage of open-source
TEEs, such as Sanctum or Keystone, will help to avoid simi-
lar attacks, as a large developer community can vet the hard-
ware implementation and microcode of the processor.

Ensuring Data Integrity CreDB builds on top of previ-

ous work on tamper-evident logs, which allow detecting

Byzantine behaviors of storage servers [23, 37] and other ap-
plications [14]. While most of these mechanisms only pro-
vide fork consistency, A2M [9] and TrInc [21] use trusted

hardware to achieve strong consistency in such a setup. How-
ever, audit mechanisms by themselves cannot provide data

privacy or policy enforcement.

Concerto [2] is a datastore that achieves strong consis-
tency using server-side integrity verification. Due to batch
verification, this approach achieves much higher performance
than other mechanisms [22]. However, Concerto ensures
only data integrity and does not guard the data from un-
wanted accesses. Guardat [34] shields data from malicious
applications by enforcing policies in the storage layer.

In a distributed setting, specific Byzantine fault-tolerant
consensus protocols can be used to shield a system from mis-
behaving principals [5, 8, 27]. In such an environment, the
trust lies in the network itself and a large fraction of nodes
behaving honestly. Permissioned blockchains have adopted
these protocols, which careful selection of committee mem-
bers and need a higher number of replicas than the approach
described in this paper. Further, they do not shield from data
leakage and cannot enforce access controls without substan-
tial additional measures.

Encrypted Databases If policy enforcement is not a re-
quirement, i.e., users trust each other, operating on encrypted
data might be sufficient to achieve confidentiality. Mahesh-
wari et al. [26] presented one of the first encrypted databases.
Their system stores hashes of the encrypted data in a small
trusted hardware module to protect from tampering.
CryptDB [30] and Monomi [33] rely on homomorphic en-
cryption of data. To make such a scheme efficient CryptDB
does not encrypt all data and only supports a subset of the

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

SQL language. TrustedDB [4] and Cipherbase [1] overcome
this limitation by running queries on encrypted data using a
trusted hardware module. All of these systems, to our knowl-
edge, assume that clients trust each other. In contrast, the
policy enforcement and accountability features in CreDB
are designed with multiple distrusting clients in mind.

EnclaveDB [31], Shieldstore [17], and PESOS [20] provide
secure storage using Intel SGX instead of dedicated secure
hardware, yielding in better performance. While a promis-
ing first step, to our knowledge, none of these systems sup-
port federation of database nodes or timeline inspection. PE-
SOS is a low-level object storage system yielding high
throughput by relying on trusted storage technologies, a
mechanism CreDB could leverage as well.

5 Conclusion

Autonomous blockchains provide a high-level datastore ab-
straction, including access to an immutable and eidetic ledger
of all changes, on top of a low-level trusted execution envi-
ronment. We believe that this abstraction provides every de-
sired property of conventional blockchains, and do so with-
out reliance on third parties, high energy consumption, or
leakage of private data. While our design requires additional
trust in the hardware and enclave code, as well as relies on
certain economic incentives, we believe this is a valid trade-
off between performance and safety for many use cases.

Finally, we presented a working prototype which demon-
strated that this abstraction allows building high-integrity
applications with relatively low effort. Benchmarks show
that this approach can handle hundreds of complex transac-
tions a second on a single node. We conclude that the auto-
nomous blockchain design yields high performance com-
pared to state-of-the-art permissioned and permissionless
blockchains, and lays the groundwork for novel designs of
trusted storage technologies.

Acknowledgements We are grateful to everyone who pro-
vided feedback on the project and earlier versions of the
manuscript, especially Soumya Basu, Adem Efe Gencer, Kevin
Negy, and the anonymous reviewers.

References

[1] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald
Kossmann, Ravishankar Ramamurthy, and Ramarathnam Venkatesan.
Orthogonal Security with Cipherbase. CIDR, 2013.

Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ping-
fan Meng, Vineet Pandey, and Ravi Ramamurthy. Concerto: A High
Concurrency Key-Value Store with Integrity. Proceedings of the 2017
ACM International Conference on Management of Data, pages 251-266,
2017.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rudiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. Symposium on Operating System Design

—
Do
—

[3

—_

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

—
=
fla

—
~
—

[10

[

(11]

[12

—

[13

—

(14]

[15

=

[16]

(17

—

(19]

[20]

and Implementation, pages 689-703, Savannah, Georgia, November
2016.

Sumeet Bajaj and Radu Sion. TrustedDB: A trusted hardware-based
database with privacy and data confidentiality. IEEE Transactions on
Knowledge and Data Engineering, 26(3):752-765, 2014.

Iddo Bentov, Rafael Pass, and Elaine Shi. The Sleepy Model of Con-
sensus. IACR Cryptology ePrint Archive, 2016.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel {SGX} kingdom with transient out-of-order execution. 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018.
Christian Cachin. Architecture of the Hyperledger blockchain fab-
ric. Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

Miguel Castro, Barbara Liskov, and others. Practical Byzantine fault
tolerance. Symposium on Operating System Design and Implementa-
tion, pages 173-186, New Orleans, Louisiana, February 1999.
Byung-Gon Chun, Petros Maniatis, Scott Shenkert, and John Kubia-
towicz. Attested Append-only Memory: Making Adversaries Stick to
Their Word. Symposium on Operating Systems Principles, pages 189—
204, Stevenson, Washington, October 2007.

Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari
Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin
Giin Sirer, and others. On scaling decentralized blockchains. Interna-
tional Conference on Financial Cryptography and Data Security, pages
106-125, 2016.

Cynthia Dwork. Ask a better question, get a better answer: A new
approach to private data analysis. ICDT, pages 18-27, 2007.

Ariel Ekblaw, Asaph Azaria, John D. Halamka, and Andrew Lippman.
A Case Study for Blockchain in Healthcare: "MedRec” prototype for
electronic health records and medical research data. Proceedings of
IEEE Open & Big Data Conference, 2016.

Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerRe-
view: Practical Accountability for Distributed Systems. Symposium
on Operating Systems Principles, pages 175-188, Stevenson, Washing-
ton, October 2007.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correct-
ness Condition for Concurrent Objects. ACM Trans. Program. Lang.
Syst., pages 463-492, 1990.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A Distributed Sandbox for Untrusted Computation
on Secret Data. Symposium on Operating System Design and Imple-
mentation, pages 533-549, Savannah, Georgia, November 2016.
Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jae-
hyuk Huh. ShieldStore: Shielded In-memory Key-value Storage with
SGX. European Conference on Computer Systems, Dresden, Germany,
March 2019.

Paul Kocher, Jann Horn, Anders Fogh, and Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre At-
tacks: Exploiting Speculative Execution. 40th IEEE Symposium on Se-
curity and Privacy (S&P’19), 2019.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmung Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM
SIGOPS Operating Systems Review, pages 45-58, 2007.

Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas
Knauth, Pramod Bhatotia, and Christof Fetzer. PESOS: Policy En-
hanced Secure Object Store. European Conference on Computer Sys-
tems, Porto, Portugal, April 2018.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

Kai Mast, Lequn Chen, and Emin Giin Sirer

Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
TrInc: Small Trusted Hardware for Large Distributed Systems. Sym-
posium on Networked System Design and Implementation, pages 1-14,
Boston, Massachusetts, April 2009.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.
Dynamic authenticated index structures for outsourced databases.
SIGMOD International Conference on Management of Data, pages 121—
132, Chicago, Illinois, June 2006.

Jinyuan Li, Maxwell N. Krohn, David Maziéres, and Dennis Shashas.
Secure Untrusted Data Repository (SUNDR). Symposium on Operating
System Design and Implementation, San Francisco, California, Decem-
ber 2004.

Jinyuan Li and David Maziéres. Beyond One-Third Faulty Replicas in
Byzantine Fault Tolerant Systems. Symposium on Networked System
Design and Implementation, Cambridge, Massachusetts, April 2007.
Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A Platform for Secure Distributed Computa-
tion and Storage. Symposium on Operating Systems Principles, pages
321-334, Big Sky, Montana, October 2009.

Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to
build a trusted database system on untrusted storage. Symposium on
Operating System Design and Implementation, San Diego, California,
October 2000.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of BFT protocols. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 31-42,
2016.

JP Morgan. Quorum. https://www.jpmorgan.com/global/Quorum,
2017.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: A practical encrypted relational DBMS. ACM, Technical
Report, 2011.

Christina Priebe, Kapil Vaswan, and Manuel Costa. EnclaveDB: A
Secure Database using SGX. EnclaveDB: A Secure Database using SGX,
2018.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. arXiv preprint arXiv:1702.08719, 2017.

Stephen Tu, Frans M. Kaashoek, Samuel Madden, and Nickolai Zel-
dovich. Processing analytical queries over encrypted data. Interna-
tional Conference on Very Large Data Bases, pages 289-300, Trento,
Italy, August 2013.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak
Garg, Peter Druschel, Rodrigo Rodrigues, Johannes Gehrke, and Ans-
ley Post. Guardat: Enforcing data policies at the storage layer. Eu-
ropean Conference on Computer Systems, page 13, Bordeaux, France,
April 2015.

Shawn Wilkinson, Jim Lowry, and Tome Boshevski. Metadisk a
blockchain-based decentralized file storage application. STOR], Tech-
nical Report, 2014.

Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum Project Yellow Paper, 151, 2014.

Aydan R. Yumerefendi and Jeffrey S. Chase. Strong Accountability for
Network Storage. Trans. Storage, 3(3), 2007.

Wenting Zhang, Dave Ankur, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and En-
crypted Distributed Analytics Platform. Symposium on Networked
System Design and Implementation, pages 283-298, Boston, Mas-
sachusetts, March 2017.

Guy Zyskindand, Nathan Oz, and others. Decentralizing privacy: Us-
ing blockchain to protect personal data. Security and Privacy Work-
shops (SPW), 2015 IEEE, pages 180184, 2015.

https://www.jpmorgan.com/global/Quorum,

	Abstract
	1 Introduction
	2 The Autonomous Blockchain Model
	2.1 Assumptions and Attack Model
	2.2 Objects and Transactions
	2.3 Protected Function Evaluation
	2.4 Semantic Security Policies
	2.5 Witnesses and Fraud Proofs

	3 Prototype Evaluation
	4 Related Work
	5 Conclusion
	References

